Testing A Flood Mask Correction Method Of Optical Satellite Imagery Over Irrigated Agricultural Areas

Emmanouil Michail⁴, Anastasia Mourtzidou⁵, Ilias Gialampoukidis⁴, Konstantinos Avgierakis⁴, Maria Gabriella Scarpino⁶, Stefanos Vrochidis⁴, Guido Vingione⁴, Ioannis Kompatsiaris ¹, Kamal Labbassi³, Massimo Menenti⁴, Fatima-ezzahra Elghandour ³

Information Technologies Institute / Centre for Research and Technology Hellas, Thessaloniki, Greece
²Serco S.p.A., Rome, Italy
³Chouaib Doukkali University (CDU), El Jadida, Morocco
⁴Delft University of Technology, Delft, Netherlands

Introduction

- Disaster prediction from satellite sources have captured the interest of the computer scientific community in the last decade
- Identifying flooded areas from Earth Observation (EO) satellite images aids in:
 - damaged areas monitoring
 - effective response of civil protection agencies during disasters
- EO satellite images are valuable sources in disaster cases due to their unobtrusive and abundant nature
- Description of a method for change detection on surface water bodies that classifies satellite image pixels as a flooded area or not
- Application to the detection of changes of surface water bodies, based on water volumes data in a Moroccan Demonstration Area (H2020-MOSES)

Methodology

Overview: Combination of Mahalanobis distance-based classification for flood mask creation and morphological post-processing for flood mask correction so as to separate flood from non-flood areas inside satellite image by utilizing the discriminative ability of the variance of the color and the infrared values of the satellite image pixels.

- Data: Satellite images of 4 colour-channels, (R, G, B, Near-Infrared (NI))
- Procedure:
 - Random selection of pixels from training dataset
 - Representation of each pixel with 4-dimensional feature vector (R, G, B, NI)
 - Classification framework using discriminant analysis technique
 - Input: 4-dimensional feature vector and label (0,1) signifying water existence
 - Training using different discriminant functions (e.g. linear, Mahalanobis)
 - Output: binary mask with 1 for flooded pixels and 0 for non-flooded.
 - Evaluate classification framework on testing set of images
 - Apply post-processing morphological operations on masks to remove erroneous areas:
 - Global filter eliminating flood-denoted pixels that as a whole did not surpass the 5% of the image size (considered as misclassified)
 - Local filter eliminating small flooded areas (10 pixels).
 - Application of image dilation and erosion around pixel and surrounding area to eliminate small non-flooded areas inside flooded area & preserve larger.

Experiments

- Training dataset:
 - MediaEval 2017 Training Annotated Dataset
 (http://www.multimedieval.org/mediaeval2017/multimediasatellite/)
- Testing dataset:
 - 1 Landsat7 image and 4 Landsat8 images
 - Water volumes data refer to the Al Massira dam located in Morocco
 - Discriminant functions evaluated for training model:
 - linear, diagonal linear, quadratic, diagonal quadratic, Mahalanobis
 - Evaluation measure: accuracy = number of pixels recognized correctly / total number of pixels
 - Accuracy measured on 1) full image and 2) on dam and surrounding area

Future work

Build and evaluate a deep representation scheme that leverages both texture and deep features in an effort to detect water bodies from space.

Supported by:

European Commission
OPEN
MOSES
beAWARE

Contacts
Maria Gabriella Scarpino Gabriella.Scarpino@serco.com
Ilias Gialampoukidis heliasgj@iti.gr